Тема 8.1. Задачи с прикладным содержанием

- **1.** После дождя уровень воды в колодце может повыситься. Мальчик измеряет время t падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле $h = 5t^2$ где h расстояние в метрах, t время падения в секундах. До дождя время падения камешков составляло 0,6 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 с? Ответ выразите в метрах.
- **2.** Высота над землёй подброшенного вверх мяча меняется по закону $h(t) = 1, 6 + 8t 5t^2$, где h -высота в метрах, t -время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трех метров?
- 3. Если достаточно быстро вращать ведёрко с водой на верёвке в вертикальной плоскости, то вода не будет выливаться. При вращении ведёрка сила давления воды на дно не остаётся постоянной: она максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила ее давления на дно будет положительной во всех точках траектории кроме верхней, где она может быть равной нулю. В верхней точке сила давления, выраженная в ньютонах, равна $P = m \left(\frac{v^2}{L} g \right)$, где m масса воды в килограммах, v скорость движения ведёрка в м/c, L длина веревки в метрах, g ускорение свободного падения (считайте $g = 10 \, m/c^2$). С какой наименьшей скоростью надо вращать ведёрко, чтобы вода не выливалась, если длина верёвки равна 40 см? Ответ выразите в м/c.
- **4.** В боковой стенке высокого цилиндрического бака у самого дна закреплен кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нем, выраженная в метрах, меняется по закону $H(t) = H_0 \sqrt{2gH_0}kt + \frac{g}{2}k^2t^2$, где t время в секундах, прошедшее с момента открытия крана, $H_0 = 20$ начальная высота столба воды, $k = \frac{1}{50}$ отношение площадей поперечных сечений крана и бака, а g ускорение свободного падения (считайте $g = 10 \text{m/c}^2$). Через сколько секунд после открытия крана в баке останется четверть первоначального объёма воды?
- **5.** При адиабатическом процессе для идеального газа выполняется закон $pV^k = 10^5 \, \Pi \, \text{a} \cdot \text{m}^5$, где p- давление газа в паскалях, V- объем газа в кубических метрах, $\kappa = \frac{5}{3}$. Найдите, какой объём V (в куб. м) будет занимать газ при давлении p, равном $3,2 \cdot 10^6 \, \Pi \, \text{a}$.
- **6.** Камнеметательная машина выстреливает камни под некоторым острым углом к горизонту. Траектория полета камня описывается формулой $y = ax^2 + bx$, где $a = -\frac{1}{100} \, \text{м}^{-1}$, b = 1 постоянные параметры, x(м) смещение камня по горизонтали, y(м) высота камня над землей. На каком наибольшем расстоянии (в метрах) от крепостной стены высотой 8 м нужно расположить машину, чтобы камни пролетали над стеной на высоте не менее 1 метра?
- 7. Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры (в кельвинах) от времени работы: $T(t) = T_0 + bt + at^2$, где t время в минутах, $T_0 = 1400 \, \text{K}$, $a = -10 \, \text{K/мин}^2$, $b = 200 \, \text{K/мин}$. Известно, что при температуре нагревателя свыше 1760 К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.
- **8.** Мотоциклист, движущийся по городу со скоростью $v_0 = 57\,$ км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением $a = 12\,$ км/ч 2 . Расстояние от мотоциклиста

до города, измеряемое в километрах, определяется выражением $S = v_0 t - \frac{at^2}{2}$, где t — время в часах. Определите наибольшее время, в течение которого мотоциклист будет находиться в зоне функционирования сотовой связи, если оператор гарантирует покрытие на расстоянии не далее чем в 30 км от города. Ответ дайте в минутах.

- **9.** Автомобиль, движущийся в начальный момент времени со скоростью $v_0 = 20$ м/с, начал торможение с постоянным ускорением a=5 м/с². За t- секунд после начала торможения он прошёл путь $S=v_0t-\frac{at^2}{2}$ (м). Определите время, прошедшее от момента начала торможения, если известно, что за это время автомобиль проехал 30 метров. Ответ выразите в секундах.
- 10. Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле $l = \sqrt{\frac{Rh}{500}}$ где R=6400 км радиус Земли. С какой высоты горизонт виден на расстоянии 4 километров? Ответ выразите в метрах.
- **11.** Для определения эффективной температуры звёзд используют закон Стефана—Больцмана, согласно которому $P = \sigma S T^4$, где P мощность излучения звезды (в ваттах), $\sigma = 5,7\cdot 10^{-8} \frac{\mathrm{Br}}{\mathrm{M}^2\cdot\mathrm{K}^4}$ постоянная, S площадь поверхности звезды (в квадратных метрах), а T температура (в кельвинах). Известно, что площадь поверхности некоторой звезды равна $\frac{1}{16}\cdot 10^{20}\,\mathrm{M}^2$, а мощность её излучения равна $9,12\cdot 10^{23}$ Вт. Найдите температуру этой звезды в кельвинах.
- **12.** Датчик сконструирован таким образом, что его антенна ловит радиосигнал, который затем преобразуется в электрический сигнал, изменяющийся со временем по закону $U = U_0 \sin\left(\omega t + \phi\right)$, где t —время в секундах, амплитуда $U_0 = 2$ В, частота $\omega = 120^{\circ} / c$, фаза $\phi = -30^{\circ}$. Датчик настроен так, что если напряжение в нем не ниже чем 1В, загорается лампочка. Какую часть времени (в процентах) на протяжении первой секунды после начала работы лампочка будет гореть?
- 13. Два тела массой m=2 кг каждое, движутся с одинаковой скоростью $v_0=10$ м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением $Q=mv^2\sin^2\alpha$. Под каким наименьшим углом (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
- **14.** Для обогрева помещения, температура в котором поддерживается на уровне $T_n = 20^{\circ}C$ через радиатор отопления пропускают горячую воду. Расход проходящей через трубу воды m=0,3 кг/с. Проходя по трубе расстояние x, вода охлаждается от начальной температуры $T_B = 60^{\circ}C$ до температуры $T\binom{\circ}{C}$, причем $x = \alpha \frac{cm}{\gamma} \log_2 \frac{T_B T_{II}}{T T_{II}}$, где $c = 4200 \frac{\text{Дж}}{\text{кг} \cdot {}^{\circ}C}$ –теплоемкость воды, $\gamma = 21 \frac{\text{Вт}}{\text{воды}}$ –коэффициент теплообмена, а $\alpha = 0,7$ постоянная. Найдите, до какой

воды, $\gamma = 21 \frac{\mathrm{BT}}{\mathrm{M} \cdot {}^0 \mathrm{C}}$ –коэффициент теплообмена, а $\alpha = 0.7$ — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 84 м.

15. Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием f=30 см. Расстояние d_1 от линзы до лампочки может изменяться в пределах от 30 до 50 см, а расстояние d_2 от линзы до экрана — в пределах от 150 до 180 см. Изображение на экране будет четким, если выполнено соотношение $\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f}$ Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы ее изображение на экране было четким. Ответ выразите в сантиметрах.

- **16.** По закону Ома для полной цепи сила тока, измеряемая в амперах, равна $I = \frac{\mathcal{E}}{R+r}$, где $\mathcal{E}-\Im$ ДС источника (в вольтах), r=1 Ом его внутреннее сопротивление, R- сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более 20% от силы тока короткого замыкания $I_{\kappa_3} = \frac{\mathcal{E}}{r}$? (Ответ выразите в омах.)
- 17. Амплитуда колебаний маятника зависит от частоты вынуждающей силы, определяемой по формуле $A(\omega) = \frac{A_0 \omega_p^2}{\left|\omega_p^2 \omega^2\right|}$, где ω частота вынуждающей силы (в с 1), A_0 постоянный параметр, $\omega_p = 360c^{-1}$ резонансная частота. Найдите максимальную частоту ω , меньшую резонансной, для которой амплитуда колебаний превосходит величину A_0 не более чем на 12,5%. Ответ выразите в с 1
- **18**. При температуре 0°С рельс имеет длину l_0 =10 м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону $l(t^o) = l_0 (1 + \alpha \cdot t^o)$, где $\alpha = 1, 2 \cdot 10^{-5} \left({}^o C \right)^{-1}$ коэффициент теплового расширения, t^o температура (в градусах Цельсия). При какой температуре рельс удлинится на 3 мм? Ответ выразите в градусах Цельсия.
- 19. Некоторая компания продает свою продукцию по цене p=500 руб. за единицу, переменные затраты на производство одной единицы продукции составляют v=300 руб., постоянные расходы предприятия f=700000 руб. в месяц. Месячная операционная прибыль предприятия (в рублях) вычисляется по формуле $\pi(q) = q(p-v) f$. Определите месячный объем производства q (единиц продукции), при котором месячная операционная прибыль предприятия будет равна 300000 руб.

Ответы:

- **1**) 1 **2**) 1,2 **3**) 2 **4**)50 **5**) 0,125 **6**) 90 **7**)2 **8**)30 **9**) 2 **10**) 1,25 **11**) 4000 **12**) 50 **13**) 60 **14**) 30 **15**) 36
- **16**) 4 **17**) 120 **18**) 25 **19**) 5000