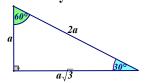

Прямоугольный треугольник

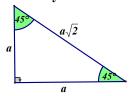
1. Теорема Пифагора

Квадрат гипотенузы равен сумме квадратов катетов $c^2 = a^2 + b^2$

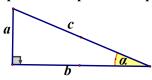
2. Тройки Пифагора



3. Свойство острых углов


Сумма острых углов равна 90^{0} $\alpha + \beta = 90^{\circ}$

4. Свойство углов в 30⁰ и 60°


Катет, лежащий против угла в 30° , равен половине гипотенузы Катет, лежащий против угла в 60° , больше другого катета в $\sqrt{3}$ раз

5. Свойство угла в 45^0

Если в прямоугольном треугольнике есть угол в 45° , то он равнобедренный, и его гипотенуза в $\sqrt{2}$ раз больше любого катета

6. Тригонометрические функции

 $\sin \alpha = \frac{a}{c}, \cos \alpha = \frac{b}{c},$

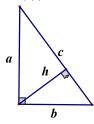
$$tg\alpha = \frac{a}{b}$$
, $ctg\alpha = \frac{b}{a}$

Cunyc острого угла - это отношение противолежащего катета к гипотенузе.

Косинус острого угла - это отношение прилежащего катета к гипотенузе

Тангенс острого угла – это отношение противолежащего катета к прилежащему

Котангенс острого угла – это отношение прилежащего катета к противолежащему

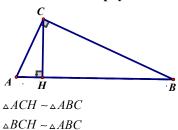

7. Таблица значений тригонометрических функций

	30°	45°	60°
sin	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg	$\frac{1}{\sqrt{3}}$	1	√3
ctg	√3	1	$\frac{1}{\sqrt{3}}$

8. Каждый катет равен произведению:

- гипотенузы на синус противолежащего угла;
- гипотенузы на косинус прилежащего угла;
- другого катета на тангенс противолежащего угла;
- другого катета на котангенс прилежащего угла.

9. Площадь

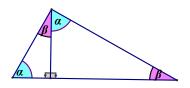

$$S = \frac{1}{2}ab$$

$$S = \frac{1}{2}ch$$

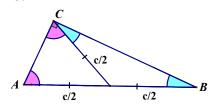

$$\Rightarrow h = \frac{ab}{c}$$

ВЫСОТА, ПРОВЕДЕННАЯ ИЗ ВЕРШИНЫ ПРЯМОГО УГЛА

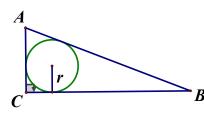
10. Подобные треугольники.



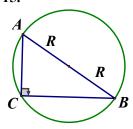
11. Пропорциональные отрезки

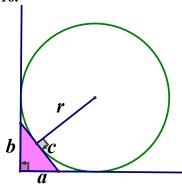

$$AC^{2} = AH \cdot AB$$
$$BC^{2} = BH \cdot AB$$
$$CH^{2} = AH \cdot BH$$

12. Равные углы


13.

 $\triangle ACH \sim \triangle BCH$


Медиана, проведенная из вершины прямого угла, равна половине гипотенузы и разбивает прямоугольный треугольник на два равнобедренных треугольника.


Радиус окружности, вписанной в прямоугольный треугольник, вычисляется по формуле $r = \frac{a+b-c}{2}$

15.

Радиус окружности, описанной около прямоугольного треугольника равен половине гипотенузы $R = \frac{c}{2}$

16.

Радиус вневписанной окружности, касающейся гипотенузы, равен полупериметру треугольника.

$$r_c = \frac{a+b+c}{2} = p$$